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Abstract 

 

Characterizing tree cover change in response to urban greening initiatives using an in 

situ tree inventory, WorldView-2 and LiDAR data in Worcester, Massachusetts 

 

Isabel Miranda  

 

Urban tree cover extent in the Greater Worcester area has changed dramatically over 

the last seven years following the discovery of the invasive wood-boring Asian Longhorned 

Beetle (ALB) in 2008. The ALB eradication strategy caused the removal of 30,000-plus host 

trees, to date.  The majority of the ALB host trees (>80%) were removed from two 

neighborhoods in north Worcester (i.e., Burncoat and Greendale). In response to the ALB 

eradication strategy, a multi-agency urban reforestation effort involving the City of 

Worcester, Massachusetts Department of Conservation and Recreation (DCR), and 

Worcester Tree Initiative (WTI) began in 2010. This study characterizes the amount of tree 

cover change between the start of the tree planting initiatives, 2010, and the present day, 

2015, in Burncoat and Greendale neighborhoods. WorldView-2 satellite imagery (0.5 m) is 

used in concert with in situ tree inventory and 1 m airborne LiDAR data to create a 2015 tree 

cover map using an object-based classification approach. The 2015 tree cover map is 

compared for areas of gain and loss to an existing tree cover map from 2010. Overall 7.52% 

of the study area showed an increase while 0.46% of the area showed loss. The DCR tree 

planting from 2010 to 2012 contributed to a 1.75% in gain in tree cover. The results of this 

study will help inform agencies (e.g. DCR and WTI) engaged in monitoring urban tree cover 



 
 

the utility of a top-down approach integrating fine spatial resolution imagery with 

LiDAR and GIS layers (e.g. impervious surface) to understand the early impacts and success 

of reforestation efforts.  
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Introduction  

 

Trees are an important component of the urban landscape providing ecological services to 

cities and their residents (Nowak and Dwyer, 2007) including reduction in storm water runoff, 

household energy use, noise pollution, and improved air quality (Nowak and Dwyer, 2007; Merry 

et al., 2014; O’Neil-Dunne et al., 2014). In addition to the environmental benefits provided by 

trees, their societal benefits include reduced crime levels, increased property value, reduced 

personal stress, enhanced landscape beautification, and sense of place (McPherson et al., 2005; 

Hostetler et al., 2013; Senanayake et al., 2013). To both maintain and enhance the socio-

environmental benefits of urban trees, regular monitoring of tree cover abundance is critical to 

understanding how tree cover, and therefore, ecological servicing from trees are changing (Nowak 

and Greenfield, 2012). Traditionally field measurements are used for accessing annual, multi-

annual tree cover inventories; however, adopting remotely sensed imagery by managers of urban 

forests presents increased efficiency and lower cost of forest inventories and management (Dwyer 

et al., 2002; Plowright et al., 2016; Roman et al., 2013).  

Maintaining an inventory of tree cover and change, through maps, allow for the birds-eye view 

of the spatial distribution of tree cover change across a study area (McGee et al., 2012; Tanhuanpää 

et al., 2014). It is important to map and characterize tree cover change over time because tree cover 

in cities and their neighborhoods constantly changes as a result of the myriad natural and/or 

anthropogenic forces (Nowak and Greenfield, 2012). Natural forces of tree cover change largely 

include tree growth (Tanhuanpää et al., 2014), tree mortality due to insects/disease (Poland and 

McCullough, 2006), senescence (Nowak, 1993) or severe weather events (Danko et al., 2013; 

Hostetler et al., 2013). Anthropogenic forces impacting tree cover include new tree planting, tree 

removal and tree mortality from either direct or indirect human actions (Nowak and Greenfield, 
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2012). Direct human actions consist of new urban development where tree cover is replaced by 

impervious surfaces such as buildings and roads and indirect human actions such as exhaustive air 

pollution and natural gas pipeline leaks (Nowak and Greenfield, 2012; O’Neil-Dunne et al., 2014; 

Phillips et al., 2013).  

Several approaches have been used to map tree cover and tree cover change in cities, including 

bottom-up ground-based inventory, and top-down aerial photography and satellite imagery (Merry 

et al., 2014). A bottom-up approach provides tree inventories with information such as age 

structure, species composition and biomass that are all important for understanding the conditions 

of the urban forest. However, bottom-up approaches such as traditional field surveys are expensive 

costing as much as $3.00 per tree (Wood 1999), and time consuming (McGee et al., 2012). The 

money invested into forest management is about five times greater for urban than exurban forests 

because of the personnel, materials and time that is needed to conduct a comprehensive inventory 

of tree cover (McPherson 1993). Tree inventories are expensive because of the detail records to 

characterize each tree and because of increased travel times due to urban forests having more trees 

that are dispersed across a city or neighborhood (Wood 1999). Furthermore, trees grow and are 

removed causing inventories in cities and neighborhoods to become less representative of the 

urban forest over time. According to Roman et al (2013)., the most common challenge for thirty-

two local urban forestry organizations was resource limitations, followed by lack of staff time and 

funding. Therefore, using remotely sensed data and GIS data layers to monitor tree cover change 

allows for a better cost and time effective alternative methods (Plowright et al., 2016; O’Neil-

Dunne et al., 2014).  

True-color aerial photography approaches include methods such as crown cover scale that 

divides the photo into polygons where samples of polygons are used to visually interpret tree cover 
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(Nowak et al., 1996). Additionally, the dot method creates sample locations in aerial photographs 

in a systematic or random fashion where for each dot the land cover underneath is recorded to 

calculate tree cover (Nowak et al., 1996; Merry et al., 2014). Aerial photography was used to map 

tree cover change in Detroit and Atlanta from 1951 to 2010 using a point and polygon-based 

approach. This method is similar to the dot and crown cover scale methods and yielded to 50.2% 

tree cover in Atlanta comparable to the 2009 estimate (51.6%) by Nowak and Greenfield in 2012 

that used paired aerial photographs to access changes in tree cover (Merry et al., 2014).  

Using fine spatial resolution imagery of 1 m spatial resolution or less is also emphasized in 

analyzing land/tree cover change within a heterogeneous landscape (Al Kofhai et al., 2012; Zhou, 

2013; Stueve et al. 2015). Land/tree cover maps made using the 30m National Land Cover Dataset 

(NLCD) were compared to land cover maps made using aerial photography from United States 

Geological Survey High-resolution Orthoimagery program and Woolpert Inc. of 0.5 and 0.3m 

spatial resolution (Stueve et al. 2015). Fine-resolution products could more accurately reveal a 

more complex landscape of conifer trees, deciduous trees, roads, buildings and grass in a variety 

of patch sizes and shapes while coarser resolution represents a simple landscape with broader 

shapes (Basu et al., 2015; O’Neil-Dunne et al., 2014; Stueve et al., 2015). Furthermore fine-

resolution imagery generated a land cover map with accuracies of ≈92 percent rather than ≈68 % 

percent made with a coarse spatial resolution, 30m, land-cover map (Stueve et al., 2015). 

Therefore, fine-resolution multispectral imagery allows for fine scale heterogeneity in the 

landscape to be identified when mapping tree cover within suburban and urban locations (O’Neil-

Dunne et al., 2014; Stueve et al., 2015; Zhou, 2014).  

Unfortunately, using true-color aerial photography to measure tree cover change is challenging 

when low spectral separability makes it difficult to locate trees, distinguish individual trees and 



4 

 

neighboring features such as lawns, as well as the shadows casted by tree crowns and tall buildings 

(Li and Shao, 2014; Merry et al., 2014; Tanhuanpää et al., 2014). Furthermore, manual 

photointerpretation and field-based methods used for mapping tree cover are laborious and sample-

driven, lacking wall- to wall information of information (O’Neil-Dunne et al., 2014). 

Numerous studies have demonstrated that integrating remotely sensed datasets through 

geographic object based image analysis (GEOBIA) is an effective wall-to-wall method for tree 

canopy mapping (O’Neil-Dunne et al., 2014). Datasets such as LiDAR (Light Detection and 

Ranging) point cloud data, LiDAR derivatives (e.g. digital elevation model, normalized digital 

surface), multispectral imagery (e.g. National Agricultural Imagery Program that includes three 

visible bands and one NIR band) and GIS files (e.g. roads) provide an effective way to analyze 

tree cover change using object-based image analysis (OBIA) (Stueve et al., 2013; Zhou, 2013; 

O’Neil-Dunne et al., 2014; Parent et al., 2015).  

O’Neil-Dunne et al., (2014) mapped tree canopy in urban and suburban landscapes in over 70 

communities in North America.  Focusing on Virginia Beach as a case study orthoimagery of     

0.15m, high quality LiDAR acquired in 2012 permitting 0.4m LiDAR derivatives, and thematic 

building footprints were used to map tree cover and change in Virginia Beach from 2004 to 2012.  

LiDAR derivatives such as the normalized digital surface model (nDSM) allowed for tall objects 

to be distinguished using a threshold of 0.61m for the initial segmentation as well as for small 

shrubby trees to be identified near coastal locations for the creation of the tree cover map (O’Neil-

Dunne et al., 2014). The incorporation of LiDAR is particularly useful for dense urban areas where 

shadowing effect of buildings is problematic with the use of spectral imagery and therefore 

provides more accuracy in mapping tree cover for an urban forest (Plowright et al., 2016). The 

integration of high quality LiDAR, high-resolution orthoimagery and thematic building foot prints 
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produced a map with more than 90% overall accuracy showing a 3.1% gain in tree cover (O’Neil-

Dunne et al., 2014).  

Zhou (2013) used 0.6m color-infrared imagery from Emerge Inc. including green, red and 

near-infrared bands along with LiDAR data to map land-cover in a suburban location of Baltimore 

County. The study used an intensity difference layer derived from the first and last return of 

LiDAR data assisting to classify different land-cover types as the intensity of the laser pulses 

indicate the reflectance of the surface feature (Chen and Gao, 2014; Zhou, 2013). Because trees 

have a larger proportion of intensity edge points than buildings do, this is reputedly an efficient 

feature to use for distinguishing buildings from trees (Chen and Gao 2014; Zhou 2013). The 

integration of OBIA and a combination of LiDAR height and intensity data has achieved a 92% 

accuracy (Zhou, 2013). Additionally, LiDAR was used to assess urban tree conditions within the 

city of Surrey, Canada (Plowright et al., 2016). This study particularly focused on LiDAR’s 

capacity to estimate tree height and crown density as indicators of tree condition. The relationships 

between tree heights measured in the field and tree heights measured with the LiDAR data resulted 

in a Pearson correlation coefficient of r = 0.927 with p < 0.001 showing that tree height estimates 

were successfully detected (Plowright et al., 2016). The crown density was measured by using 

percentage of non-ground LiDAR returns and the coefficient of variation of return height 

(Plowright et al., 2016). From this study airborne LiDAR proves to be an effective tool to detect 

trees in an urban environment and measure indicators of tree condition (Plowright et al., 2016). 

LiDAR has opened several opportunities to urban forestry by locating exact tree locations and 

conditions to produce a more comprehensive urban tree dataset for monitoring the urban forest 

(Plowright et al., 2016) 
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 As LiDAR data have recently become widely available it provides an opportunity for land 

cover and tree cover mapping at fine scales especially in conjunction with multispectral imagery 

(O’Neil-Dunne et al., 2014). LiDAR derivatives can assist in separating bare ground from non-

ground (e.g. buildings and trees), however, LiDAR data can be costly, $74 per square km (Rogan 

and Chen, 2004) and are not always available for research projects at a particular study area making 

an automated approach for monitoring tree cover change difficult (O’Neil-Dunne et al., 2014; 

Zhou, 2014).  

Within the last 10-15 years remote sensing technologies have advanced allowing for more 

computerized mapping of detailed tree cover at resolutions for 1-2m or less which represent forest-

urban landscape at finer scales (Stueve et al., 2013). In addition, despite the success of the 

GEOBIA approach which seeks to approach tree cover mapping by using existing data sources 

available such as LiDAR, multispectral imagery and thematic GIS layers, GEOBIA techniques 

have not been widely documented (O’Neil-Dunne et al., 2014). Past GEOBIA literature focused 

on the development of segmentation algorithms and focused less on these methods accommodating 

for a tree cover data across large areas in a timely and cost effective manner to facilitate with time 

series analysis (O’Neil-Dunne et al., 2014) This paper seeks to use the experimental approach, 

GEOBIA, that allows for a flexible method for characterizing tree cover change in neighborhoods 

of Worcester, Massachusetts, by integrating a variety of quality remote sensing and GIS data 

sources.  

This study maps tree cover gain, loss and persistence in the northern Worcester, MA from 2010 

to 2015 using geographic object based image analysis (GEOBIA), 0.5 m WorldView-2 imagery, 

1m LIDAR and in situ data to characterize and map tree cover. From 2008 to 2010 tree cover loss 

in Worcester, Shrewsbury, Boylston, W. Boylston and Holden, Massachusetts was caused 47% by 
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conversion to developed land types (residential or bare soil), 25% by USDA tree removal for the 

ALB eradication, 15% by to timber harvest and 6% by a December 2008 ice storm (Hostetler et 

al., 2013). The city of Worcester experienced the greatest proportion of tree canopy loss due to the 

USDA tree removal (60%) with the majority of trees (>80%), predominantly maples (Acer), 

removed from neighborhoods Burncoat and Greendale (Palmer et al. 2014). In response the 

Department of Conservation and Recreation (DCR), the Worcester Tree Initiative (WTI) and the 

city of Worcester initiated tree planting programs in Worcester in 2010 (Danko et al., 2013; Palmer 

et al. 2014). This paper is motivated by the need to estimate the change in tree cover in Burncoat 

and Greendale, identify locations of gain and loss and estimate and locate the tree cover gain 

contributed by the DCR to quantify and monitor the success of the DCR tree planting initiatives.  

Study Area  

 

The study area is comprised of Burncoat and Greendale neighborhoods located in the 

northeastern part of the city of Worcester (see Figure 1). Burncoat and Greendale encompass 8.1 

km2 (8% of the city of Worcester) and the dominant land-cover consists residential areas with 

53.2% and mixed species of hardwood and coniferous forests with 11.6% (MAFOMP, 2011). 

Before the ALB infestation the urban forest consisted of mainly species in the maple family 

(Aceraceae) as 4 out of the 5 street trees planted in Worcester (Freilicher et al., 2008). The most 

abundant species consisted of 60.83% Norway maple (Acer platanoides), 9.61% Sugar Maple 

(Acer saccharum), 6.43% Red maple (Acer rubrum), 2.13% Sliver Maple (Acer saccharinum) 

and 2.06% Littleleaf linden (Tilia cordata) (Freilicher et al., 2008).  In 2008 the ALB infestation 

caused approximately 30,000 host trees to be removed of which more than 80% of the trees were 

removed from Burncoat and Greendale (Palmer et al. 2014). As a response to the large amount 
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of tree removal tree planting programs by the Department of Conservation and Recreation 

(DCR), Worcester Tree Initiative and the city of Worcester were established. From 2010 to 2012 

there was a high concentration of trees, 12423, planted in Burncoat and Greendale 

neighborhoods (Manley et al., 2012). Therefore, within the past seven years Burncoat and 

Greendale encountered major changes in cover due to the ALB eradication effort and the 

resulting tree planting programs. 

Data  

 

In Situ Data 

DCR tree planting points used in this study are a subset of the trees planted after the ALB 

eradication effort. The location of 12,423 of trees planted by the DCR from Fall 2010 to Spring 

2012 are used for a comparison between locations of tree cover gain that are attributed to the 

DCR tree planting. The top five trees planted in the dataset consist of the White Fir, American 

Arborvitae, Kousa Dogwood, Japanese Tree Lilac and Colorado Spruce and were primarily 

planted on Burncoat Street, Skyline Drive, Shawnee Road and Cheyenne Road. 

GPS points for trees planted by the DCR, which were used to compare tree cover gain 

and loss polygons within the study contributed by the DCR, were incorrectly demarcated because 

of human or mechanical error. Therefore, when comparing DCR tree planting points to areas of 

gain and loss a visual estimation of which gain and loss polygons aligned with each tree planting 

point were made. 

LiDAR 

The LiDAR data is used to create LiDAR mask that masks out canopy higher than zero 

meters and separates areas of ground from non-ground. The LiDAR mask was used for the 

process of creating the 2015 tree cover map allowing for detection of smaller crown trees. 
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Between Fall of 2013 and Spring of 2014, airborne LiDAR data covering the city of Worcester’s 

boundaries were collected under a contract by Woolpert (Dayton, OH). The discrete return 

LiDAR system used were a Leica ALS70 and an Optech ALTM Gemini LiDAR sensor attached 

to Cessna 404 and Cessna 310 aircraft. The Leica ALS70 and Optech ALTM Gemini LiDAR 

sensor have an average single pass flight line swath of 0 to 1.5 m x altitude (variable). For the 

Leica ALS70 sensor it was acquired at 200 – 3500 m altitude with a maximum pulse rate of 500 

kHz with 7 returns per pulse. The Optech ALTM Gemini LiDAR sensor was acquired at a 150 – 

4,000 m altitude and has a maximum pulse rate of 167 kHz with 4 returns per pulse. Once the 

sensor calibration, data acquisition and GPS processing phases were complete the individual 

flight lines were processed used to derive a raw “point cloud” LAS file that matched the 

overlapping flight lines, generated statistics for evaluation comparisons and made any 

adjustments needed to remove any residual systematic error. The LAS files were filtered to 

create a ground and non-ground class and once all data was imported and classified and survey 

ground control data was used for a vertical accuracy assessment.  

World-View 2 imagery 

WorldView-2 imagery for this study was collected from Digital Globe 

(https://www.digitalglobe.com/) and used to create a 2015 tree cover map through the process of 

segmentation. The multispectral imagery was pan-sharpened using the panchromatic band that 

allowed for a 0.5m resolution. The time and date of acquisition is 15:40 on May 7th 2015 and the 

swath is 16.4 by 16.4 km. The spectral resolution ranges from 0.4 to 10.4 micrometers.  

2010 Tree Canopy 

 2010 tree canopy was used in the study compare tree cover gain and loss between the 

2010 tree cover map and 2015 tree cover map. The 2010 tree cover map was created by the 
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University of Vermont Spatial Analysis Lab. This map was made by applying an object based 

classification scheme to 1 m NAIP imagery collected during July 2010.  

Impervious Surface 

The impervious surface layer represents impervious surfaces (e.g. buildings, roads, 

parking lots, and concrete) covering the Commonwealth of Massachusetts. The surface was 

extracted using a semi-automated technique by Sanborn Map Company using 50cm Vexcel 

UltraCam near infrared orthoimagery collected in April 2005 for the Color Ortho imagery 

project. The impervious surface layer was used to mask out all the buildings from the LiDAR 

Mask leaving predominantly tree cover. This layer was overlaid with the segmentation 

classification to create the 2015 tree cover map.   

Methods 

 

Step 1: Creating a Tree Cover Map for 2015 

 

The character of the urban forest is heterogeneous and spans from stands of hundreds of 

trees to trees along streets to individual trees in residential and institutional lawns. Therefore, to 

account for this complexity of the urban forest, an object-based approach is conducted through 

an Object-based Image Analysis by conducting an image segmentation of high resolution 

imagery. Unlike traditional pixel-based classifiers, an object-oriented approach takes into 

account more than the average spectral signature of an object such as the object shape and the 

spatial pattern of the objects in the landscape (McGee et al., 2012). The segmentation process is 

a supervised classification method that groups adjacent pixels together into segments based on 

their spectral similarity creating spectrally homogenous segments (McGee et al., 2012). This 

study uses the TerrSet GIS software package (Eastman 2015) to subdivide the raster bands into 
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homogenous groups that represent the same objects. There are three steps for the tool: (1) 

creation of a variance image through a user defined filter based on all input raster across a 

moving window (2) creation of segments based on a watershed process that groups pixels which 

have low variance (3) merging of adjacent segments through the similarity of segment mean 

value and standard deviation defined by the user-specified threshold. The user defines the four 

parameters (e.g. window width and similarity tolerance) and tests the optimal values for the 

segmentation parameters through a visual comparison in a false color composite. TerrSet also 

needs a pixel-based classification along with the segmentation-based classification to assign 

classes to the image segments, for this paper a maximum likelihood classification approach was 

used (see Figure 2).  

Segmentation was tested within three different locations of Burncoat and Greendale by 

altering the parameters of window and tolerance and compared to Google Earth imagery and the 

false color composite to see if tree cover segments were homogenous, without any pixels of 

buildings or roads. The segmentation results were later used to enhance the 2015 tree cover map 

produced with a maximum likelihood classification approach. In addition, a LiDAR mask was 

created by masking out canopy higher than zero meters that separates areas of ground from non-

ground; therefore, the LiDAR mask includes mainly buildings and tree cover excluding objects 

at ground level such as grass or roads. The LiDAR mask was helpful in detecting smaller crown 

trees as well as detecting trees that would have otherwise been misclassified due to the similarity 

in spectral signature of grass, shadows and trees. Furthermore, the impervious surface layer was 

used to mask out all the buildings from the LiDAR Mask to aggregate the trees detected from the 

LiDAR mask (see Figure 2).  
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Step 2: Creating a Tree Cover Change Map from 2010 to 2015 

 

The study focuses on detecting tree cover change through the presence of a tree in a location in 

2010 and comparing it to 2015. Therefore, tree cover gain and loss is not calculated by analyzing 

the change in tree crown width but rather if the tree-crown was present or not at a particular 

location between the two years. Since the 2010 and 2015 tree cover maps were produced with 

different data sources the 2010 tree cover map was first split into smaller polygons using the tree 

cover polygons from the 2015 tree map. Next, the tool “select by location” in ArcMap was used 

to acquire areas of no change, gain and loss. Using the “select by location” tool allowed for an 

entire tree polygon to be selected, indicating the presence or no presence of tree cover, rather 

than detecting gain or loss in tree crown width (see Figure 2).  

Results  

 

An accuracy assessment of the 2015 tree cover map was conducted using Google Earth 

imagery with 200 stratified sample points, stratified by areas classified as tree cover and not tree 

cover on the map. An overall accuracy of 93.2% with an error of commission of 0.066% and an 

error of omission of 0.068%. Sample points of tree cover were misclassified as dirt, pavement, 

edge of roofs and shadows. The tree cover change map from 2010 to 2015 indicates a greater 

percentage of areas in gain than loss, 7.52% areas of gain and 0.46% areas in loss of tree cover 

(figure 3). 

The DCR tree planting contributed 1.75% in gain and of the total tree cover loss 0.032% 

were trees that the DCR planted from 2010 to 2012. Kernel density was used to create a density 

surface of each occurrence of tree cover gain (See Figure 4). In addition, Optimized Hotspot 

Analysis tool was used to further examine significant clusters of tree cover gain that visually 
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appear clustered on the density surface map by counting the number of tree cover gain 

occurrences within fishnet polygons. The Optimized Hotspot Analysis output was used to 

examine locations of significant tree cover gain clusters, where hotspots indicate high densities 

of tree cover gain are near other high densities of tree cover gain (see figure 6). The Optimized 

Hotspot Analysis output indicated significant clusters (>99% confidence level) of tree cover gain 

along roads and front/backyards extending around and beyond Clark Street and Burncoat Street 

in Burncoat (see zoom in on Figure 6). Additionally, other significant clusters of high tree cover 

gain density are located by Burncoat Preparatory School, forested areas by Garrison Avenue and 

forested locations in the north of Burncoat near West Boylston Street. In the north of Greendale 

there are significant clusters of tree cover gain density extending from Maiden and West 

Boylston Street in Greendale (see zoom in on Figure 6).  

In addition, the tree planting by the DCR in Burncoat attributed to tree cover gain on E 

Mountain Street and Cobblestone Lane in both the front/backyard of Burncoat (see figure 8). 

Within Greendale tree planting by the DCR contributed to tree cover gain along Kendrick 

Avenue and near Price Chopper on Hunnewell Road (see figure 8). In addition, six locations, 

Dixfield Road, Hunnewell Road, Bristol Street, Granville Avenue, Calumet Avenue, and 

Whispering Pine Circle were chosen across Burncoat and Greendale from the tree cover gain 

hotspots to compare the tree cover gain in the front and backyards. A visual count concluded 

59% tree cover gain occurred in the backyards.  

 A density surface was calculated for tree cover loss using Kernel density (see Figure 5) 

indicating the magnitude of tree cover loss per unit area from the centroid point of a tree cover 

loss polygon. Figure 5 indicates high densities of tree cover loss in the southern part of 

Greendale by West Boylston Street and Fraternal Avenue (south of Abby Kelly Foster charter 
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public School).  The Optimized Hotspot Analysis output indicated significant hotpots (>99% 

confidence level) of tree cover loss in the southern part of Greendale by West Boylston Street 

and King Phillip Road (See figure 7).  Additionally, six locations used to analyze tree cover loss 

in front and backyards are spread out across the study area and include Dixfield Road, 

Hunnewell Road, Ivernia Road, Granville Avenue Calumet Avenue, and Whispering Pine Circle. 

A visual count of tree cover loss polygons at the six locations concluded that 87% of the tree 

cover loss occurred in the front yard.  

In Burncoat tree cover loss occurred on St Marke Road near the Worcester Country Club 

and on Fairhaven road south of Quinsigamond College (see Figure 9).  Examples of tree cover 

loss in Greendale are on Granville Street in the backyards and on King Philip Road in the front 

yard (see Figure 9). However, unlike some tree loss in Granville Street the loss in tree cover on 

King Philip Road were not trees the DCR planted. Overall the majority of tree cover loss in 

Burncoat and Greendale occurred in the front yards while the majority of tree cover gain 

occurred in the backyards.  61.5% of the tree cover loss polygons are in Greendale and 38.5% of 

tree cover loss polygons in Burncoat, with Burncoat having approximately more than 26 ha of 

tree cover than Greendale.  

Discussion and Conclusions  

 

The purpose of this study was to characterize tree cover change from 2010 to 2015 in 

Burncoat and Greendale using LiDAR and WorldView-2 satellite imagery. The results 

demonstrate that there is more tree cover gain than loss within the study area, with DCR tree 

planting from 2010 to 2012 contributing to 1.75% of tree cover gain. Of the total tree cover loss 

0.032% were trees that the DCR planted from 2010 to 2012. Tree cover gain and loss was seen in 

both the front/backyards of homes near Quinsigamond Community College, Burncoat 
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Preparatory School, Dodge Park and Price Chopper. However, the majority of tree cover gain 

occurred in front yards while the majority of tree cover loss occurred in backyards.  

Additionally, only tree planting points from 2010 to 2012 by the DCR were acquired and 

therefore further tree planting by the DCR from 2012 onwards was not used as a comparison 

between the gain and loss polygons in the study area. Hence, tree cover gain and loss could be 

further contributed by the DCR. In addition to the DCR the WTI and city of Worcester also 

initiated tree planting programs that contribute to tree cover gain. This analysis suggests that 

social implications (neighborhood effect), policy implication and land ownership patterns 

influenced the targeting of tree planting over in specific locations of the study area. Targeted 

planting suggests an explanation for hotspots of tree cover gain in the study area.    

This study uses multi-source GIS data, a GEOBIA approach, which relies on existing 

public investments in LiDAR, multispectral imagery and thematic GIS layers reducing data 

acquisition costs (O’Neil-Dunne et al., 2014). This allows for research covering large geographic 

extents to be performed quickly and at a lower cost than using field survey and inventory, as well 

as accommodates for datasets that vary in quality and content by using a combination of LiDAR 

and imagery to differentiate trees from buildings and other urban structures (Hostetler et al., 

2013). With increasing use and advances in airborne LiDAR technology more urban forest 

managers will be able to integrate high resolution multispectral imagery with LiDAR technology 

to better monitor the changes in tree cover in the landscape, improve allocation of resources for 

tree planting programs and investigate further into locations of gain or loss in tree cover.  

In addition, detection of tree cover is lost and an increase in errors of omission and 

commission when working with rasterized LiDAR rather than raw LiDAR point clouds (Zhang 

et al.2015; Zhou et al., 2013). Even though LiDAR allows for increase efficiency of urban tree 
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inventories by detecting large and small crown trees, its accuracy is dependent on the sensor’s 

pulse rate and the pulses’ hit location. Consequently, LiDAR may mischaracterize and miss the 

crowns of some trees, particularly obstructed trees by fences or sheds or trees right next to 

buildings (Zhou et al., 2013).  

This study encourages a top-down approach to monitoring urban tree cover change by 

integrating data from different data sources using high spatial resolution satellite imagery, 

LiDAR and GIS thematic layers (e.g. impervious surface). The results can assist future research 

and urban forest managers as tree cover mapping estimates are essential for ecosystem service 

models to determine environmental impacts of tree cover in the urban landscape.  Additionally, 

this research demonstrates a multi-source GIS approach that can accommodate for using 

different data sources for time series analysis while providing a more efficient and less expensive 

method towards monitoring tree cover change over large extents.  
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Figures  

 

 

Figure 1: Study are of Burncoat and Greendale neighborhoods in Worcester, MA 
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Figure 2: Flow chart indicating process of segmentation and integration of LiDAR mask to create 

the 2015 tree cover map and a tree cover change map from 2010 to 2015. 
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Figure 3: Tree cover change map from 2010 to 2015 indicating gain, loss and no change in tree 

cover  
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Figure 4. Density surface created using Kernel Density of incidents of tree cover gain in 

Burncoat and Greendale.  
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Figure 5. Density surface created using Kernel Density of incidents of tree cover loss in Burncoat 

and Greendale.  
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Figure 6. Optimized Hotspot Analysis in Burncoat and Greendale, highlighting hotspot locations 

of tree cover gain along Dixfield and Ladybank Road near West Boylston Street, Greendale (top 

right). Burncoat neighborhood hotspots of tree cover gain along Longmeadow and Calumet 

Avenue (bottom right).  
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Figure 7. Optimized Hotspot Analysis in Burncoat and Greendale, highlighting hotspot locations 

of tree cover loss. Zoom in of tree cover loss hotspot location is on West Boylston Street 

intersecting with King Phillip Road and Andover Street.  
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Figure 8. Locations of tree cover gain in Burncoat and Greendale 

 

Figure 9. Locations of tree cover loss in Burncoat and Greendale. 

 


